The Regularity Lemma and Graph Theory

نویسنده

  • ARIEL HAFFTKA
چکیده

The Szemerédi Regularity Lemma states that any sufficiently large graph G can be partitioned into a bounded (independent of the size of the graph) number of regular, or “random-looking,” components. The resulting partition can be viewed as a regularity graph R. The Key Lemma shows that under certain conditions, the existence of a subgraph H in R implies its existence in G. We prove the Regularity Lemma and the Key Lemma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szemerédi's regularity lemma revisited

Szemerédi’s regularity lemma is a basic tool in graph theory, and also plays an important role in additive combinatorics, most notably in proving Szemerédi’s theorem on arithmetic progressions [19], [18]. In this note we revisit this lemma from the perspective of probability theory and information theory instead of graph theory, and observe a slightly stronger variant of this lemma, related to ...

متن کامل

Szemerédi’s Lemma for the Analyst

Szemerédi’s Regularity Lemma is a fundamental tool in graph theory: it has many applications to extremal graph theory, graph property testing, combinatorial number theory, etc. The goal of this paper is to point out that Szemerédi’s Lemma can be thought of as a result in analysis. We show three different analytic interpretations.

متن کامل

Note on the 3-graph counting lemma

Szemerédi’s regularity lemma proved to be a powerful tool in extremal graph theory. Many of its applications are based on the so-called counting lemma: if G is a kpartite graph with k-partition V1∪ · · ·∪Vk, |V1| = · · · = |Vk| = n, where all induced bipartite graphs G[Vi, Vj ] are (d, ε)-regular, then the number of k-cliques Kk in G is d( k 2)nk(1± o(1)). Frankl and Rödl extended Szemerédi’s r...

متن کامل

A Szemerédi-type regularity lemma in abelian groups

Szemerédi’s regularity lemma is an important tool in graph theory which has applications throughout combinatorics. In this paper we prove an analogue of Szemerédi’s regularity lemma in the context of abelian groups and use it to derive some results in additive number theory. The simplest is a structure theorm for sets which are almost sum-free. If A ⊆ {1, . . . , N} has δN2 triples (a1, a2, a3)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008